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w- SUMMARY

5 Initially-we considers the standard isonormal linear process L on a
. c r,- , ,

Hilbert space H, and applying metric entropy methods obtain bounds for +he-

probabilitythat supcLx > X, C c H and X large. Under the assumption that

the entropy function of C grows polynomially, we find bounds of the form•.2- 2 4 r' t"~e-

c- /,where is the maximal variance of L. We use a notion of entropy

finer than that usually employed, and specifically suited to the non-stationary

situation. As a result we obtian, in the non-stationary setting, more precise

bounds than any in the literature. apA^

We then treat a number of examples in which the power 4 is identified.

These include the distribution of the maximum of certain 'locally stationaryl,

process on IR, as well as those of the rectangle indexed, pinned Brownian

sheet on IRk, for which c=2(2k-I), and the half-plane indexed pinned sheet on

IR for which a = 2.
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1. INTRODUCTION

We start with some motivation from the theory of empirical processes,

letting X I,...,X n be i.i.d. observations from some k-dimensional distribution,

and assuming we want to test the hypothesis that the parent distribution is

given by a measure v: v(A) = PEXi E A} on the unit cube. A natural test pro-
ln

cedure is to form the empirical measure vn: v (A) = . the
n n Y n i=l IA(Xi) "1A isth

indicator function of A) and compare vn to v via a Kolmogorov-Smirnov type

statistic of the form

(1.1) sup {An- Ivn(A) - v(A)I}
A

for some family A of Borel subsets of [0,l] It is known (Dudley 1978, 1984)

that vr(v n-v) converges weakly to a Gaussian process on A, under conditions

related to the size of A. Consequently, the study of (1.1) reduces, in the

limit, to the study of the supremum of a particular Gaussian process over a

*class of sets.

Unlike the case for their Markov counterparts, however, it is well known

that for Gaussian processes it borders on the impossible to obtain the exact

distribution of their (global) maxima. For stationary Gaussian processes on

the line, for example, there are only six covariance functions for which the

precise distribution of the maxima of the corresponding processes are known

(c.f. Slepian (1961), Slepian and Shepp (1976), Cressie and Davis (1981),

Darling (1983)). For random fields on Rk the situation is even worse, for there

exists no non-trivial Gaussian field, either stationary or not, for which the

precise distribution of the maxima is known. In certain specific cases,

however, upper and lower bounds to this distribution are known.

Goodman (1976), for example, calculated good bounds for the cases of the

pinned and regular Brownian sheets in I. (See Section 4 for definitions).

I= .
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These have been improved and extended to higher dimensions in Cabahia and

Wschebor (1982), Cabahia (1984) and Adler and Brown (1986). All but the last

reference deal only with sheets arising from the case v = Lebesgue measure

in (1.1). The only other Gaussian field for which some (not wholly satisfac-

tory) bounds are known is a two-parameter generalisation of Slepian's

triangular covariance function (Cabahia and Wschebor (1981), Adler (1984)).

Needless to say, in more general situations, such as those arising from

(1.1) when the parameter space may be a class of sets, virtually nothing is

known on the exact distribution of the supremum.

Partly, or perhaps primarily, because of this dirth of results a large

amount of effort has been expended in studying the asymptotic properties of

Gaussian maxima. The most central, and most well known result in this direction

is due to four authors, Fernique (1970, 1975), Landau and Shepp (1971) and

Marcus and Shepp (1971), who proved various versions of the result that for

any zero mean sample path continuous Gaussian process X(t), t E S, and S a

metric space,

(1.2) lim Un P{sup(X(t), t E S) > X}= _11(202)
X-3-W x

where
2 

= sup E{X 2 (t)}.

teS

An immediate consequence of (1.2) is that for all XO >0, and any e > 0,

there exists a constant K=K(c,XO) such that if X > XO then

(1.3) P{sup X(t) > X} < K ecx2e'X/a2

teS

(An even sharper result than this is due to Borell (1975). See comment 3 of

Section 6.)

V-ONOMMM n I m lot
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Our aim in this paper will be to perform a simple epsilonectomy - i.e. to

remove the factor exp(X 2) from (1.3). In general this cannot be done without

paying some price, and in the cases we shall consider the price will be to

replace this exponential factor by a smaller power factor of the form Xa ,

a > -1, so as to obtain bounds of the form

> ~ ~ /I<k a - 2

(1.4) P{sup X(t) > X1 < kXae -

tES

for large enough X.

Results like (1.4) are not new. They were obtained originally by

Pickands (1969a,b) for the class of zero mean, stationary Gaussian processes on

[0,1] whose covariance function R(t) = E{X(s)X(s+t)} satisfies

(1.5) R(t) = 1 - citla + o(itla) as Itl - 0,

where a E (0,2] and c > 0 are constants. Pickands showed that for each fixed

h > 0 for which sup,<t<hR(t) = 6 <1 for all E >0

(1.6) lim 1 P{sup X t > X1 = hCl/a Ha~~- o Zw~ k/ O<t<h

where Ha > 0 is a finite constant depending only on a and p is a standard

normal density function. (Except for the cases a = 1, a = 2, the value of H

is not known.) This result has been extended to certain stationary random

fields by Belyaev and Piterbarg (1972) and, more recently, to certain non-homogeneous

processes on l 1 by Piterbarg and Prisjaznjuk (1979). A proof of (1.6), along

with historical details, can be found in Leadbetter, Lindgren and Rootzen (1983).

More recently Weber (1978, 1980) has obtained a set of results which,

while they do not identify constants as in (1.6), provide bounds to the distribu-

tions of Gaussian suprema for the widest possible class of Gaussian processes,
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including the set-indexed processes described above. However, as we shall show

later, his bounds, when they are of the form of (1.4), do not always yield the

smallest possible value of a. We shall have more specific comments to make

about Weber's results later.

Before saying any more, it is probably worthwhile at this point to explain

to the sceptic what we gain from an epsilonectomy at (1.3) beyond the surgeon's

natural pleasure of neatly removing an unnecessary appendage or, indeed, from

sharpening the power in Weber's results. The first application is purely

theoretical. Consider a function valued Gaussian process, i.e. a process

SY(.), whose value at a given time is a Gaussian random process. Such processes

arise naturally in a number of ways, often by "relabelling", for example, a

two-parameter process X(s,t) to obtain a function valued Yt under the correspon-

dence Yt(s) = X(s,t). Such processes include the Kiefer process (Kiefer (1972))

of empirical process theory. Iterated logarithm type results for the growth of

sup Yt(s) with t have been studied in depth (see, for example, Goodman, Kuelbs
s

and Zinn (1981)) and, to a heavy extent, are based on the inequality (1.3).

Finer results, such as upper-lower class theorems for sup Yt(s), are much harder
s

to obtain (Kuelbs, (1975) is one exception we are aware of) as (1.3) does not

provide fine enough information. A result of the form (1.4) does, however,

fulfill this need, and is applied to this purpose to obtain upper-lower class

theorems for empirical processes in Adler and Brown (1986). Establishing (1.4)

in general, therefore, opens up the possibility of a general upper-lower class

theory for function valued processes.

For the second application we return to our opening paragraph and the

Kolmogorov-Smirnov type statistic (1.1). Although our results will bound the

(asymptotic in n) tail distribution of (1.1), they will not really do so

,,. az.
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sharply enough to enable, say, the generation of critical levels for statistical

tests. This problem seems to be hard enough that for the foreseeable future

this will be done by simulation techniques. What a bound like (1.4) tells the

simulator, however, is that the critical levels depend on three parameters,

k,a, and a2 . As will be shown in Section 4, a and 02 can be obtained from our

general theory, so that only one parameter remains to be estimated, making the

simulation task much simpler.

The paper is organized as follows. In order to treat the most general

processes possible, we shall work initially with the isonormal Gaussian process

on Hilbert space. This, together with requisite entropy notions, will be

described in the following section, where we shall also develop a version of

Fernique's (1975) inequality, that will be the basis of all that follows. In

Section 3 we shall present a number of theorems that show that by putting more

and more structure on the parameter Hilbert space (via entropy conditions)

finer and finer bounds on the distribution of the maximum can be obtained.

Proofs are deferred to Section 5. Section 4 contains a number of examples, in

which we apply the results on the isonormal process to specific problems. For

example, we obtain sharp (in the sense of best possible power a) bounds for

the maximum of a rectangle indexed Brownian sheet. In Section 6 we conclude

with some comments.

Acknowledgements. Some of the results presented here, when restricted to the

class of homogeneous Gaussian fields on Ik, have a significant overlap with

*i the "extended Fernique inequality" in Berman (1985a). We had already obtained

these results independently before hearing, from Professor Berman, of this

work. However, when he very kindly sent us a preliminary (still untyped)

version of his results we took advantage of the opportunity to combine what was

* 0 N N"



6

best in both proofs, and so the statements and proofs of Theorems 3.2 and 3.3,

when restricted to simple random fields, have much in commnon with his results.

As our examples show, however, even for simple fields, our later theorems go

beyond his in identifying the optimal power.

We are also grateful to Larry Brown, who did most of the hard wc-k in

* Adler and Brown (1986). It was his insight on the problems tackled there that

set us off on the current work.

Both a referee, and Professor Weber himself, drew our attention to the

results of Weber (1978, 1980). We are grateful to Professor Weber for corres-

* pondence helping to clarify the relationships between his work and an earlier

version of this paper.

law

M11

.41
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2. THE ISONORMAL PROCESS AND A FERNIQUE INEQUALITY

The central idea is to study one, canonical, Gaussian process,

and then relate any particular process to this one. It is defined as

follows. Call a sequence {Xn I of random variables orthogaussian iff

they are independent with L(X.) - N(O,1). Let H be a real, infinite-

dimensional Hilbert space. A linear map L from H into real Gaussian

variables with EL(x) = 0 and EL(x)L(y) = (x,y) for all x,ycH is

called the isonormal Gaussian process on H. (c.f. Segal (1954), Dudley (1967,

1973 ). For example, if {xn I is an orthonormal basis for H so that

*4 for xcH, x = Eanxn , we can let L(x) = zanYn, where the Yn are ortho-

gaussian.

Since Gaussian distributions are uniquely determined by their

means and covariances, the isonormal process L can be regarded as the

only real Gaussian process. For, if {xt, tETI is any real Gaussian

process with mean Ext = mt then L(xt-mt) + mt is another version of

the process, where we take L2(Q,P) for H. On H,L "remembers" the

covariance structure of xt , and, by its linearity, also keeps track

of all joint distributions. Thus, we can in general neglect the speci-

fic joint distributions of xt on (s,P) and work only with the

abstract geometric structure of the function t-x t-mt H. To see pre-

cisely how this works in practice, see the examples in Section 4.

In order to study the structure of H, we shall require the notion

of metric entropy. Let C be a subset of a metric space (S,d). Given

>O, let N(C,,) _ NC() be the minimal number of points x1 ,.. .,x n

from C such that for all ycC min d(xi,y) < c. We assume N finite
i

for all c > 0. Consequently, there exist sets Al,...,AN(,) covering

C such that for all n d(x,y) < 2c for all x,yEA n. Set HC(E) logNc(E).
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Then HC() is the metric entropy of C. Metric entropy is well known to play

an important role in continuity problems for Gaussian processes. For example,

L, restricted to C c H, is sample continuous if f0 H (x) dx < -. Metric

entropy can also be used to study suprema problems. For example, Weber (1980)

has shown that if Mjxli = 1 for all x E C, and certain other side conditions hold,

then

(2.1) P{sup jLxi > X + TI} < const. N(C,v(X))'(X),
XEC

where

T(X) = P{ILxI > X)= /-17J e- u2 du,

X

rx = p(p-l) J [H(C,c) - log e] de,

v(X) = inf {0 < e < c0: h(E) <

h() = -I [H(C,c) - log E]2,

C0 = inf {0 < c < 1: N(C,c) < 2}

and p E (0,1) is arbitrary. Assuming H X is small enough for large X (as is

usually the case), that v is at most polynomial, and that the entropy is

polynomial, we see that (2.1) is a result of the form of (1.4), which is what

we are seeking.

There are, however, two difficulties with Weber's result, insofar as

general best upper bounds are concerned, and, in particular in relation to the

examples from the theory of empirical processes that motivated us. The first

is the assumption that jxli : 1 for all x. It is possible to get around this

in the general case by noting
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(2.2) P{sup Lx > X} < P{sup Ly > A}
XEC yEC '

where a = sup Ilxil, and C' {y: y = x/ljxlj, x E C}. It is not hard to see

that the entropy function for C' follows the same general behaviour of that for

C, and since IlYll = 1 for y E C' Weber's result then gives a bound for (2.2).

However, it is easy to check via examples such as Example 4.1 that this procedure

does not give the sharpest bounds possible.

The second difficulty to somewhat more fundamental, and essentially

insurmountable, even if Weber's results did not assume lxii = 1. It lies in

the fact that a methodology based purely on metric entropy can never always give

the best bounds. To see this, one example will suffice. In Section 4 we show

how to calculate supremum distributions for general processes by assigning to

each process a particular Hilbert space, and then studying L on that space. It

is easy to see that the Wiener process, W(t), t E [0,2] and the stationary

Slepian process St := Wt+l - Wt, t E [0,l] generate identical (up to a constant)

entropy functions since

E {iW t - Ws2}= it - si = E {jS t - Ss2}, 0 < s,t < 1.

Thus any bound for the suprema distributions of W and S on [0,1] coming from

metric entropy considerations involving only H must be the same. But it is

well known that whereas P{sup Wt > X1 = O(X- e-ljx), we have
[0,1]

P{ sup S > X} = O(e X).
[0,1]

In general, then, the problem is that different processes may have essentially

the same metric entropy, but quite different suprema distributions.

In order to solve this problem we shall require finer partitions on C

- p -' r , ,v ,..'.r, , . ,. ,--,L, . . -. . . .,....-..,..... . . . .-.
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than those obtainable just from entropy considerations. To this end,

for given 6 > 0 set

(2.1) C6 +  {xCC:llxII > 61, C- = {xCC:llxll < 61,

where C C H and 11.11 is the H-induced norm. Now define

(2.2) NC+(6,.):= N(C6 +,s), NC-(,E): = N(C6 -,c).

Since C = C6+ UCJ-, it is obvious that NC(E) < NC(6,E) + N0 (6,E)

for all 6 and c. We shall need one more entropy function,

(2.3) Nc(61, 2, ) N c 6 C), 0 < 61 62) S > 0.

The motivation behind this last entropy function should be clear.

The idea is to first break up C into regions over which L(x) has

a variance (=JIxII 2 ) within certain bounds, and then to measure the

"size" of each of these regions via entropy considerations. This will

provide the finer information we shall need (particularly for non-

homogeneous processes for which lixil is not constant over H) to obtain

sharp bounds for the distribution of supL(x).

We can now commence setting up the basic (Fernique type)

inequality from which all our other results will ultimately follow.

To this end, set

(7= sup llxil.
. xIEC

XE C



Let 6.i be a sequence satisfying 0 = 60< 6 . 6m = a y

with m possibly infinite. For each i=l,...,m let E: i, j=l,29...%

be an infinite monotone sequence such that lim e. . = 0. We shall use
j -).

these two sequences to partition C as the union of C(.,~,where

C(v,ri) C C + C n {xeC: V l < n}1, 0 < v < n < a

Note that for every j there is a finite collection of points of

which we shall denote by Cii satisfying

(2.4) #C i =N C(6 i- fl e ii

(2.5) for all yeC(6 -1 ,6) there exists an xeCii such that

fIx-y11 < i .

(Here #A is the cardinality of A.)

We shall need one more double sequence Xi1i,...,m, j=0,1,2,...,

of positive numbers. Clearly

(2.6) P{suplLxl > X io6. } N c(6 i-1 6 i 'ilM i)xec1.

where

(2.7) p(U) 2/7T f -e -X2 dx
u

Furthermore, for each xeC(6 i1 ,6i) there is a point x. (X)E:C. such

that Ilx-x. .11< E. . Consequently
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P{ sup JLx - Lxi (x) > X.ijcij} < N c(6i-lSiij+l)(ij),
xc1iC,j+l

from which follows that

J

(2.8) P{sup ILxI > X i06i + X ikixC i ,j+l k=l I~

J

< NC(6i 1,'6i e Si,k+l )4 (Xik )
k=O

Now note that, as j C Ci becomes dense in C(6i_ 1,6i). Consequently,

choosing a separable version of L we obtain from (2.8) that

P{sup 1LxJ > Xio 6i + E X.ij I < E Nc(6il16i' ,ij+l Xij).
C(6i_ 1 ,6i) j=l j -

It is now trivial to check the truth of the following inequality, which

forms the basis of the remainder of the paper.

Basic Inequality For sequences 6i, ij and ci satisfying

0 = 60 < 61 < ... < 6m = a (m possibly infinite) and eij N 0

as j for all i, separable versions of L satisfy

m m
(2.9) P{sup JLxi > E Xi0

6 i + E E X ij}
xCC i=l i=l j=1 ij

m
< z N NC (6 i 1 ,6i Ei  ) (W ij)

- i l j=0-I, l"

Note that this basic estimate is extremely general, and not parti-

cularly informative. Our task now will be to propose meaningful, checkable

conditions on Nc(vn,€), and, by judicious choices of the various

sequences in the basic inequality, reduce the various sums in (2.9) to

simple, useful, forms.

. .4 .N
\ , ..,' ~~~~~~~- .V.,, 

_
" '" "', ,,.. ..'''
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3. MAIN RESULTS

There are basically two types of possible growth rates for entropy

functions that yield interesting results on sup Lx, polynomial growth

of the form NC(E) -. aE-  , or exponential growth of the form Nc() - a exp(J'K).

Faster than exponential growth rates yield discontinuous, unbounded pro-

cesses for which no non-trivial bound on the distribution of sup L can

exist, and slower than power rates are generally just not interesting.

In this paper we shall study only polynomial entropies, and shall show

how to relate the K above to the a of (1.4). For some remarks on

exponential entropies, see Section 6.

Polynomial entropies, while initially seemingly restrictive, cover

a wide range of examples, including random fields indexed by finite

dimensional Euclidean space and processes indexed by spaces of sets,

such as polygons, that are describable by a finite number of parameters.

Processes indexed by Vapnik-Cervonenkis classes of sets or functions

(c.f. Section 6) are also described by polynomial entropies. (c.f., for

example, Dudley (1973, 78, 84).)

For the first result, we shall assume only minimal information on

C, which also turns out to be all that is required if L is stationary

on C (implied by IxJJ = const. for all xcC and (x,y)=f(x-y) for all

SxfyC and some positive definite f). To be more precise, we assume

there exist positive constants a and K such that

(3.1) NC(E) _ Nc(O,a,c) <a -

for small enough c . Then it is easy to show via the basic inequality

(2.9) (c.f. Section 5) that for large enough p > 2 and all x > (l+4Kznp)
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(3.2) P{sup I Lxl > X(o+2p- 2 )} < iap2K 0e - u2 du
xCC X

To the reader acquainted with Fernique (1975) this inequality should

appear familiar, for he has a similar inequality for processes on

'V Euclidean space. It is in fact a simple matter to derive Fernique's

inequality from (3.2).

Via (3.2)it is not hard to prove the following result, closely related

to Thdorbme 2.1 of Weber (1980) in the case jlxjj = a = 1 for all x.

Theorem 3.1 Suppose Nc(c) < ae-K for all e e(0,s 0]. Define the

following constants.

f max(e 0 ,2,2K+I) 0 < K < 4,

b b(K,c 0 ) =

max(e 0 ,2,1 + 2VKQ kn K) K > 4,
5 ~ 5+

"l : 5-( i )' M2 : 25-1)exp{(2a + )/a4}

Then, for all X > 2b(a + )2,

(3.3) P{sup 1Lxi > x} < Mi X2K-1 e - X2 /2a 2 exp{2(a+x 2 )/o4}
xeC

<MX 2K1 e-X2/2a2

Two things should be noted about this result. The first is that

since the assumptions assume nothing about the variation of lixil on C,

(3.3) is unlikely to lead to sharp bounds for non-homogeneous processes.

In fact, it doesn't. Secondly, the constants in (3.3), while a little

unwieldy, are identifiable. As we assume finer structure on C, while

we shall get smaller powers for the power of X in (3.3), we shall lose

track of the constants. (In principle, we could always keep track of the
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constants, but one reaches a point where they become so complicated that

it no longer seems worthwhile to expend the not inconsiderableeffort

required to do so.)

Our iirst step away from homogeneity will be to divide C into

two regions, in one of which jjxjj is close to its maximum a, and to

concentrate on the separate entropies of these regions. In particular,

from experience with Gaussian processes on R (e.g., Berman (1985b))

we should expect that the distribution of P{suplLxl > x}for large
C

should be determined primarily by the entropy NC(6,a,e) as 6, a.

This idea leads to the following result, in which, in most applications,

we shall choose an f such that f(6)W0 as 6; a.

Theorem 3.2 Let f:(O,a) +R be such that

there exist positive constants a, K and c such that for all

(3.4) NC(0,6, ) <_ac , NC(6,aef(6)) <_a -

Then for each 6 and all X > X*(EO6,a,,Gf) we have

(3.5) P{sup jLxj > x}
xC

5 2(a+X-2 ) 12 ~ a6

*-a(a+l )exp{( ) X- { X2 K fK(6) + [X- 2  + (a-6) ]-K eX 2 / 20 2

2 4 2 }

!5)9 < - -X2/2a 2 { ZcfK( 6 ) + [X2 + 1

where M = a a(1 )exp {2 (+l} and x is the smallest x satisfying
2: C

4

the following three conditions:

(3.6) X > [min( ,E0 ) - (-]'

* F ~ ~ 2

Jill ~ ~ \~ '
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(3.7) > max(2,0- ) f (6),

2(a + )2(2K+l) 0 < K < 4,(3.8) > I

(.12(a + )2(l+2r.ZnK) K > 4.

Note how the conditions on the constants are becoming unwieldy.

To see how this result works, let us prove-a simple corollary.

The idea of the corollary is to introduce a parameter of "non-homogeneity",

L ,for C that describes the sizes of subsets of C over which l1xl

is close to its overall supremum a. Homogeneity is described by

= 0, with increasing a describing increasing non-homogeneity. The result is

Corollary 3.1 Under the conditions of Theorem 3.2, if f satisfies

(3.9) f(6) < c(-6)

for some positive a and c then for sufficiently large X

(3.10) P{suplLxl > X} < M l + 2K/(l+) e- X2/2a2

where xec

M a(c + 2')(o + )exp 2(a+l)/4}

*(The interested reader can easily substitute into (3.6) - (3.8) to

make the statement "sufficiently large x" more precise.)

Proof. Set 6 = a - x72/(1+x), taking X large enough for 6 to be

positive. It is then straightforward to check that (3.6) - (3.8) are

satisfied for large enough X . Clearly, as x-) we have 6-a To

IN= M
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prove the corollary consider the last term in (3.5)

X2,y(6) + [X-2+ (_6)]-K < cx2KX- 2K/(l+a) + (X-2 + x2/(l+a))-K

<(c+2K)A 2K /(+a)

again for sufficiently large X . Substituting this into (3.5) establishes

the corollary.

Note, again, that large X sends 6 to a. That is, it is only

the neighborhood in C for which jjxlj is close to a that has any effect on

the distribution of supjLxj. To convince ourselves that the assumption

(3.9) has actually led to a sharper bound, we need only note that the

power of x in (3.10) is never larger than that in (3.3), where no such

assumption was made.

Our next assumption on C will be that it possesses some sort

of scaling property, in the sense that there are subsets of C which

look much like C itself, except that the original norm has been changed

by a scaling factor. The idea then is to partition C into a number

of smaller pieces, study the supremum on each one of these via

Theorem 3.2, (to yield Theorem 3.3) and then piece the various bounds

together to bound the supremum over C itself, (Theorems 3.4, 3.5).

To this end, fix e > 0 and let G be a partition of C satisfying

(3.11) sup jjx-yjj <e for all A EG

x ,yEA

Define NCG(e): = #G Clearly NCG(e) > NC() , since the latter

entropy is related to an G of minimal cardinality. In general

however we shall want to choose G so that both entropies are

effectively the same. Now we introduce the "scaling hypothesis",

by assuming the existence of a function f and a constant a such that

zv '. M 11 Y ' , - I.. . % e
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(3.12) NA(f(e)e) < ae-K for all A c Ge,

and small enough e,e > 0. Such an f always exists. (Take f = 1!) Clearly,

however, for this partitioning procedure to have any value, we shall want

f(e) 0 as e U 0. Nevertheless, it is not necessary to assume this at this

stage, and the bounds in Theorem 3.3 and its corollaries are correct for any f.

If f does not decrease to zero, however, they are uninteresting.

Note that it would be nice to replace (3.12) with the more pleasing

condition NA(f(e)e) < NC(e) comparing entropies. However, such a condition

turns out to be impractical in examples, since we generally do not have the

precise form of NC(), but only its growth rate.

Note, also, that we can always take NG(e) to be non-increasing, and,

given some f satisfying (3.12), its left continuous monotone (non-decreasing)

rearrangement also satisfies (3.12). Thus, in what follows, we shall always

take f left continuous. Consequently, fixing some p > 2, the function

g(e) := e + 2f(e)/p
2

can also be taken to be left continuous, so that its inverse

9- (n) :: sup {6: g(e) < n}

is well defined. We can now state the following result which is closely

related to Thdorbme 2.1.1 of Weber (1978)in the case lxil = 1. Our style

of proof is completely different however.

Theorem 3.3 Suppose NC(e) < aE-K for cE(O,E 0 ], and that, for all

e(0,e0], Ge and f satisfy (3.12). Then for every p > max(2,0 ),

any AEGe :A = s Ixll , and all x > g(e)(l+4Kinp)

(3.13) P(sup jLxi > x) <,([x-g(e)(l+4Knp) ]/o A)
( 3+ 4ap 2

K(x/g(e))

+ 4ap 2 KA x' e A "2/2G. exp(X 2g2(e)/2aA 4 ) .
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There is an easy corollary to this theorem that is far more

illuminating. For large enough X, set

(3.14) e 9-I ([X2 (l+4K~np)]1 )

and substitute into (3.13). Then apply the standard inequality

(u) < v2 i -l- u2  u > 0, to obtain

-Corollary 3.2 Under the conditions of Theorem 3.3 we have, for all
X> max(l.l,{g(/2)(l+4K np) }l -l1), AE 6 X,

P{up jLxj > X} < C1 X eX 2/ 2 + c 2+4np)},
xCA

where

C = 6cA e 1/ a2 + 4ap2<oA 2exp{(2aA4 (l+4,c9.np)) - }

c2 = 4ap2K(l+4K2np)"

(The constant 6 in c1 comes from x > 1.1. In general, 6 can be replaced

-2 -1by (l-x- )_ .)

An irritating aspect of both Theorem 3.3 and its corollary are

that the constants diverge as GA -, 0. The same phenomenon occurs in

Berman's (1985a) Theorem 3.1. In the following corollary, we show that

this can easily be avoided via a simple trick, due, a referee tells us,

to Ldvy.

Corollary 3.3 Both Theorem 3.3 and Corollary 3.2 hold if we replace

aA in the bounds by any a > aA , as long as we then double the constants.

The proof is easy, so we give it now. Note firstly that if Zt ,

t ET, is any collection of a.s. bounded, zero mean, Gaussian variables,

and Y an independent zero mean Gaussian variable, then
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(3.15) P(supjZt > X) < P(sup Zt > X) + P(inf Zt <
t t

: 2P(sup Zt > X, Y>0) + 2P(inf Zt < -x, Y <0)
t t

2P(sup IZt+YI > x)
t

To use this inequality, take a > a A  and Y zero mean Gaussian

with variance a2 - 0 2A , independent of Lx for all xcA, and

define a new process L* by L*x = Lx + Y. Consider the image of

A under L*, call it A*1 as part of an L2  space of Gaussian

variables, where for any two points, u,v in the image such that

u = L*x, v = L*y, x,yEA their inner product (u,v), is given by

E(L*x,L*y). Then clearly

IN uIl. = II xl( + - 2A$ IIu-CI. = lix-yfI

Consequently, suPA*IjujI* = a2 and A* has the same entropy

function as A. Let I be the identity map on this set. Then I is

clearly isonormal on A*, and supAIuI= supAL*x Thus, we can apply

Theorem 3.3 and Corollary 3.2 to I and then note (3.15) with Z = L to

prove the corollary.

Now let us pause for a moment to consider the import of Theorem

3.3 and its corollaries. It is clear from Corollary 3.2 that for large

X, we find that the dominant term in the bound is O(-le-X2/aA2). But

this is of the order of the probability that a single zero mean

Gaussian variable with variance GA2  is greater than X. That is,

we have replaced the supremum of L over A by its value at one

point only. Essentially, this has been done by making A small as x

becomes large, since AG OX and e will be small for x large.

That is, we have achieved at this stage a discretization of the supremum

N ,, %.." . . r,'. '' , '" . '..'',w. './ ". ' ( - Z
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problem. This is actually the heart of the solution, for all we need

do now is sum the bounds of Theorem 3.3 and its corollaries over the

various sets in Ge to bound the supremum over the whole of C.

To sum these bounds efficiently, we require further assumptions

on the structure of C , as in the following two results, with which

we complete this section, and in which we finally give up trying to

keep track of constants. In the first result we shall, as in Theorem 3.2,

concern ourselves primarily with regions of C of large norm.

Theorem 3.4 Suppose NC(e) < aE-K for c c(O,c0], and that there

exist constants c and a such that for each ec(O,e0] there

exists a partition G, of C and constants ne,6O(e) so that

(3.16) n(6,o) < c(a-6)6NCG(e) + n for all 6E(0,6o(8)].

where

(3.17) n(6,e): = #{AEG:: AnC + 01.

Then, there exist constants c, and c2  such that for sufficiently

large x

(3.18) P(sup jLxi > X) < c N cG(ex )X-l-2(inx)Be - X2 / 2 2

.4 xcCl

xA -C X/2U
i ex

Here cI  and c2  depend on c, ,a,60, and an arbitrary p, but

not on x. The factor e is defined at (3.14).

Our final task is to free ourselves of the logarithmic term in

(3.18) by partitioning C even more finely.

Theorem 3.5 Assume the assumptions of Theorem 3.4, but replace (3.16)

by: There exists a A0 (e) such that for all 0 < 62 - 1 < 0
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(3.19) n(6,.6 2 9,) <cO 2 6 1) 5N cG () + n0

whe re

(3.20) n(6,,6 2 .6): =#{AEGe: AnC+nC

1 2

Then there exist constants C 1  and C 2  such that for sufficiently

large

(3.21) P(sup ILxI > X)<c1N G(eXX1Ue-2/2

c -1 - X2 /2 0
2

+c2n e

We shall now see how to apply these results to specific examples.
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4. EXAMPLES

Our examples are of two kinds. In some we simply re-derive

known results. Our aim here is to show that the rather general theorems

of the previous sections give, when applied to specific cases, the best

possible results. The more interesting examples which (by "induction")

we also feel give the best possible bounds, are new. In particular,

Examples 4.3 and 4.4, which consider the suprema of rectangle and half-

plane indexed Brownian sheets, represent the first time sharp (asymptotic)

bounds have been obtained for set indexed processes.

All our examples deal not with the isonormal process on Hilbert

space H but with processes whose parameter space is generally some-

what simpler. Thus we shall have to translate these processes to the

isonormal case. But this is easy, for if Xt  is a Gaussian process

on, say, a metric space (S,d) with continuous covariance function

R(s,t), then we simply identify H with the L2 space of X, and

Cc-H with the set {xH: x = X t  form some tcS}. For x=Xt , y=Xs

in C we have (x'y)H = R(t,s). Clearly L is now the identity operator,

so that Lx is simply x identified as a Gaussian variable rather than

an element of H. Furthermore supl Lx- supIX ti.
xCC tFS

Entropy calculations are only slightly more involved, for we shall

generally partition C by first partitioning S (this is usually geo-

metrically simpler) and then letting the above identification induce

a corresponding partition on C. We shall work the first example carefully

to explain what is happening. In the later examples, we shall skimp on

detail.

IP
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Example 4.1. Let X be a stationary, separable process on [0,1]

with zero mean and covariance function R(t), which, for some positive

al, a and yl satisfies

(4.1) 1 >R(t) > l-a 1ta for all tE[0,Yl]

Let a(t) be a positive, continuous, monotonically increasing

function on [0,1] such that for some Y2 > 0, 0 < a2 <_a 3  and

some a > 0

(4.2) a2It-sIct< jo(t) - (s)l < a3 t-slV whenever It-sl < Y2

Define now a scaled version of X by

Y(t) = o(t)X(t), te[0,1].

We think of Y as a locally stationary process, (c.f. Berman (1974))

and shall show that

<I C X-l -X2/202 (1) 9 > a > 0,

(4.3) P{supYt > A}[0,1~ tYtj{C, e, 8>~>0

c 2Xl-2/a+2/ e-X2/202(1) 0 < < a,

for some finite c1  and c2 and all x > 0.

Before we prove (4.3), which we shall do via Theorem 3.5, it is

instructive to consider how close we could get to (4.3) via existing

theory. If we apply Berman's (1985a) recent bound, then the best we

can do is a bound of the form

f cX"I+Ie >22/2a2(I) > > 0,
(44

(4.4) P{suPIY(t)j > X} ci+2/8eA2/2a2 (I) 0 < 8 < 2
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This is clearly poorer than (4.3). [A proof of (4.4) follows easily

from (4.5) below and Example 4.1 of Berman (1985a).] The above result

could also be obtained, within the framework of this paper, via Theorem 3.3,

which is effectively the analogue of Berman's result for the isonormal

process.

One could also try to apply Weber's (1980) Thdorbme 2.1 here. In fact,

his result is not strictly applicable, unless strict equality hold in

(4.1) and (4.2). Assuming this, one obtains a result like (4.4), but with

an extra factor of log X in the bounds. Thus Weber's result is weaker

yet than Berman's.

Finally, before commencing the proof, we note that bounds similar

to (4.3) have been obtained for processes displaying covariance behaviour

similar to that displayed by our Y(t) by Piterbarg and Prisjaznjuk (1979).

They actually do better than (4.3) for their case, for using arguments in

the style of Pickands (1969a,b) they both identify the constants in

their bound and show that the bound is sharp.

Throughout the proof we shall consider Y(t) to be both a random

variable and a point in H. From (4.1) and (4.2) we have that for all

s,t with It-si < YA A Y2

(4.5) jiY(t) - Y(s)ll 2  = E(ja(t)X(t) - o(s)X(s)I 2)

<a2It-s 2a + 2o2 (1)alit-sjc

We now divide the argument to two distinct cases, and consider firstly

a > 2a. Then, via (4.5),

(4.6) iIY(t) - Y(s)II < (a 2+ 2o2( 1 )a t-sl t "= a4it-sI'.

3i~ 1 41t{/& ~ x
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To partition C, for each E > 0, we simply partition the unit interval

in sub-intervals each of length (2c/a 4 )I/a , and then map these intervals

into C by the correspondence t - Y(t). Clearly then NC(e) < (2E/al4)I/

for small enough c, so that we have polynomial entropy with K=l/L.

(Actually, it is not quite true that NC (E) < (2E/a4 )_I/ , for a true

upper bound is 1 + [(2c/a 4 )
1 /), where, here, [x] is the integer part

of x. Nevertheless, to make life a little easier, let us agree here

that henceforth every time we bound an entropy by some non-integer, we

allow ourselves the freedom of adding a minor "integer-correction factor",

if necessary. This involves no real loss of precision.)

To obtain (4.3), we shall apply Theorem 3.5. For this we need a

handle on the function n(61,62,e) of (3.19), and to determine the e

for this problem. To do this, fix e, and let G be the partition just

described, but based on intervals of length (o/a4 )l/ . Subdividing

each AeG0 according to the same principle, we easily obtain

N CG(e) = (e/a 4)-I/ and NA(Se) <_ 1/a for small enough e and 0.

Fx p > 2, and compare this with (3.12). We see we can take f(o) = a

there, so that the g(e) of (3.13) is given by g(e) = e(l+2p'2 ), and

the o of (3.14) by
= -I

(4.7) o X [(1+2p-2 ) (1 +4znp/a), 15 .

Now take a(0) 61 < 62 _< a(l) and consider the set C+AC62

1 2
It is easy to see (we leave the algebra to the reader) that for

62 - 61 < a3Y2 this set is the image of an interval in [O,l] of length

between a3 (62-61) and a2 (62-61)

To finally bound n(61,62,o): = #(AGeG: AnC 1nC6  0} for

V' -O ' ' 1

I.Jr_
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162-611 < AO(a), set A0(e) = e2. Then since each AeG is the image

of an interval of length 0(0 ) and C6 n C6  the image of an interval

of length at most 0(62/a), we have that n(6 1 ,6 2, ) is at most two. Thus

(3.19) is satisfied for all positive a with ne = 2, and all the

conditions of Theorem 3.5 are satisfied. Consequently (3.21) holds for

every B > 2a. Take 8 arbitrarily large in (3.21) to obtain (4.3) and

prove our result for the case 8 > 2a.

Now take a < 2a. Then by (4.6) we have for small It-si tnat

IIY(t) - Y(s)ll < a4 It-sI B/2. The argument above thus gives coly-

nomial entropy with K = 2/8. Defining G as the image of intervals

of length (e/a4 )
2/a, we once again find f(e) = a but now

ex = x' [(l+2p-2 )(l+ 8np) ]-

The set C+ n C- remains as it was above. Again take AO(e) =e 2

6 1 6 20

and consider n(62,61,e). If 8 (a,2a) then, once again, as e " 0

we find n(61,62,e) < 2 for 62 - 61 < A0(e). Consequently, in this

case the argument is precisely as above, and we now have (4.3) for

all 8 > a.

If 0 << a the intervals mapping into G0  can be shorter

than those mapping onto the C+ A C2 , (lengths 0(02/) versus

i/ct 1 0 /at 1 2 G
(62 - 61)  <o( )). Consequently, noting that NC (6) = (a 4 )-2/

we obtain

n(61,62,e) <2 +c(6 2 - 61) 1 /aNCG(e)

for some finite c. That is, we have the right bound for (3.19) of

Theorem 3.5. Substitution into (3.21) completes the proof.



28

Our remaining examples are all connected with Brownian sheets.

Let Xk be Lebesque measure on [0,1]k. The zero mean Gaussian process

W defined on Borel sets in [0,1] k with covariance

(4.8) E[W(A)W(B)] = VAn B),

is called the set indexed Brownian sheet. The pinned version of W,

denoted by
0k

W(A) %= W(A) - Xk(A)W([0,l] k)

has covariance

(4.9) E(W(A)W(B)) = Ak(nB) - Xk(A) k(B).

For the special case of W indexed only by k-intervals of the form
k 0 0

At = H [O,ti], we write W(t): = W(At) and W(t) = W(At), and
- i=l o

call W(t) and W(t) the point indexed sheet and pinned sheet, res-

pectively.

W(t) is of particular interest as the natural k-dimensional

generalisation of Brownian motion while W(A) arises as a weak limit

in an empirical measure setting. (c.f. Dudley (1978).) We start with

the point indexed pinned sheet.

0 k
Example 4.2 Let W be a point indexed Brownian sheet on [0,1] . Then

there exists a finite c such that

(4.10) P{sup W(t) I > x} < e2
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This result was originally established in somewhat greater

generality in Adler and Brown (1985), where it was also shown that this

bound serves, for different C, as a lower bound as well. It is not,

however, obtainable from any other general Gaussian bound. Using

Berman's (1984a) result, or our Theorem 3.3, the best bound possible is

only O(x 2k-le-2X2 )

We rederive the result here to show how it can be obtained from the

general theory. Once again, we shall apply Theorem 3.5, so we are

basically concerned with finding a good bound for n(61 ,62,a), and

the other factors in (3.19).

We commence by noting

0 0 0 0

(4.11) IIW(t) - W(s)IF = E[(W(t) - W(s)) 2 ]

kf__ (A tAA ) _ < zlIt i-sil ,

k -2l

for all s,te [0,1] k. Now, for each e > 0 set m " [ke - ]

([x]: = integer part of x) and define the partition 1 of [0,1] k by

k k ni  n.+l
I = {AC[0,l]k: A = n (- , -] n.=O,l,... ,m -11

i6l me me

Furthermore, let G be the partition Ie induces in H, the L2  space00

of W. By (4.11), if x,ycAEG, then 11x-yII <_ , so that G is

a partition of the type required for Theorem 3.5, and

(4.12) NC (e) : [k/e ]k < 3kk "2k ,

S. ~ ~ 7 S, I
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the inequality following by simple algebra. By (4.12), C has polynomial

entropy with K < 2k. We now check the scaling property.

Fix e 0, set pE: = [-2 ], divide each Ac 1e into pk equal

k-intervals, and map these into the corresponding AcG. Applying

(4.11) once again, it is easy to check that

NA(c) < 3 "2k for all e < (2k) "  and A Ge

Thus we can take f(e) = e in (3.12) and, for some p > 2,

(4.13) ex X x-1 [(l+2p-2 )(l+8kznp) ]-

All that remains is to investigate n(61 ,62,e). Firstly note that it

suffices to consider 61 > k, for we can break up C into two parts,

over which ixil < 4 and ljxII > . Over the first part the inequality

(1.1) gives us an upper bound of O(e_ 2 ) for the tail of the supremum,

which is clearly of smaller order than the desired (4.10). Thus the

case 6. < k can be neglected. Now note that C11 C2 is the image
i 1 2

of the following set, in which we write It for t, x ... x tk

(4.14) 1(61,62) = {t: 612 < jtl(l-t) < 6221

{t: 1- ( 61 2) < I tl <j - -622

2) < < +(-a2) }
U{t: + (k- 2 1 . _

The second line follows via a little elementary algebra. To count the

number of A from 1e that intersect I(6 , 6 2) it suffices to count

the number of lattice points of the form (nI/me,. . . , n k/ m )  falling

t1N
lS * 7.
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in 1(6162). But this is relatively easy, for if we fix n,...nk _1

then some more algebra applied to (4.14) shows that no more than 32,/2(6 2 -61 )m0

values of nk are permissible. Allowing nl...nk-l to vary, we thus

obtain
n(61.6 2,6) < c(m6) k-I (6 2- 61)b'm,

<_ c(k)e-2k (62- 61)11

<_ c(62- 61 )'N cG (e)

But this is all we need, for substitution into (3.21), on noting that

a2 = for this problem, immediately establishes the required (4.10).

Example 4.3 Let Rk be the set of all k-intervals of the form

[s,t] = i [s,t] contained in [0,1]. Then there exists a constant
i=l 1

c such that

0 2(2k-1) -2x2
(4.15) P{suplW(A)J>X} < cx e

Rk

Before we prove this result, we shall establish its sharpness by

showing that there exists a c' such that

c.X2(2k-l) e 2  0

(4.16) e < P{sup W(x) > X}.
Rk

We shall prove this for k=2. For k>2 the proof is basically the

same, the notation is just a little longer. Let A [s,t] be a

rectangle in [0,1]2 , and define a mapping T:R2  [O,1] 4 by

tI  "I  t2-s 2
T([s,t]): : (t tl si tit t----- t2).

,,-,.-2 2
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Clearly we must have 0 <_s, <_ti <1 ,i =1,2 for [s,t] to be in R2

and so it is easy to see that T is one-one and onto. The inverse

mapping is defined by

--- 1

(4.17) T- (zl,z 2,z3,z4) = [(z2(l-z1),z4(l-z3)), (z2,z4)].

Now define a process X(z) on [0,l]4  by X(z) = W(T" (z)).

This process is clearly Gaussian with zero mean, and it follows from

(4.17) and (4.8) that

(4.18) E[XZ(z)] = A(T- (z)) - 2

This is the variance of the point indexed sheet on [0,l] 4. After a

page or so of elementary algebra, one can also derive the rather useful

inequality that for any A,BeR 2

4
X(AnB) _ n [Ti(A)ATi(B)]

i=l1

where Ti(A) is the i-th coordinate of T(A). An immediate consequence

of this is that

0 01 0 < 4

E[X(u)X(v)] = E[W(T u)W(T v)] < iUAVi - u-!vl.
i=1 1 * -

That is, the covariance function of X is dominated by that of the point

indexed sheet on [0,l]. Consequently, by (4.18) and Slepian's inequality

(Slepian (1962)), the tail of supX dominates that of the sheet. Theorem

2.2 of Adler and Brown (1985) states that this, in turn dominates

cX6e- 2X 2  for some c, (or cx2(2k-l)e2X2  for general k), so that

(4.16) is proven.

4
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Now to the upper bound. We shall give the main steps of the

derivation and skip all the algebra, most of which is similar to that

in the previous example. To define Ge , set me = [2k/6 2], and let

Ge be the image in H of the partition of Rk given by UJcLk(e)A(J)

where Lk(e) is the set of all integer 2k-tuples of the form
(jl (1 )  jl (2 )  , . jk (I ) 9 k(2 ) with ji (1) < j i ( ) . .i 1 .

i ( 9) = 0,1,...,me-l, i=l,...,k, Z=1,2 and A(J) is the collection of

all k-intervals [x,] satisfying Ixi-i (1)/me <e2/2k,

lyi-Ji(2)/me < e 2/2k, i = l,...,k. It is easy to see th.t Ge is a

partition of the required form, and that

NcG(e) < 3.4 kk2ke - 4 k = ce - 4 k

Consequently we have polynomial entropy with parameter K = 4k. Con-

tinuing the same procedure, it is easy to see that, for each AEGe ,

NA() < c " 4 k , so that as in the previous case we have f(e) = e and
A8ee cE

Now consider C 1A C 62 which we can write as

k 2 kk 2 2{B = i [xiYi]: < R(yi-xi n (Yi2 -Xi < "
i=1 I I ~

Again we can assume l > k, and follow the procedure of the previous

example to eventually obtain

n(61 , 2 ,) < cNCG(6)(62-61) for 62-6 1 < Ce2 .

Substituting all the above into Theorem 3.5, together with the fact that

a= , we prove (4.15)

:..
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The previous two examples almost seem to indicate that in working with

Brownian sheets it is only the dimensionality, d, of the parameter space

that determines the power of X in our bound. For example, for W on

[Q1],we have dk and the bound is cx2 &l e2 For Woe . FrW on

Rk, we have d=2k (each AcRk can be specified by 2k parameters)

C 2(d-l) e2X2
and the bound is again CX e We find this once again in

0

treating W indexed by all half-squares in R2 , (which we shall write

as D2: ={AC [0,1]2: A = [0,1]2 n {(x,y): ax + By + y < 0 some

for which d=2

Example 4.4 For the Brownian sheet indexed by half-squares, we have

(4.19) P{suplW(A)I > x} <_cx e

D2

for some finite, positive c.

To commence the proof of (4.19) note firstly that if AEV2
0 0 c

then W(A) = -W(A ). Consequently we need only consider half of V2

say those half squares that contain at least one of the points (1,0)

or (1 l). We write this as V2

Let SI,...,S 4  denote the four sides of the unit square,

{(x,y): 0 < x,y < 1 on which, respectively, x=O, x=l, y=O, y=l. To

define Ge, set me = [0-2 ] and x i(k) (e) the point on Sk at a

distance i/m from its start. Now let A(e,k,z,i,j) be the collection

of all half planes in D,+ with boundary intersecting S between x.(k)
2 k

and xik), and S between x. and ()
x+l ,  zj and xj+l (kz=l,...,4 k ;i'j=

O,l,...,nil). These A clearly provide a partition of + , and we4" 0
take the induced partition in the L2  space of W as G Clearly G

has the properties we generally require and, furthermore

'. I
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(4.20) NCG (6) 4 ()(m +1)2 < 246e4

=. Consequently we have polynomial entropy with K=4. To further subdivide
-. ~ ~~(k) x~k) ] mrfiey

these sets, simply subdivide each interval [xi (' ] (k

so that simple calculations yield that NA(EC) < -4 for each such A.

Consequently f(e) = e and for p > 2

e x 'X(l+2p-2)(l+8znp) ] - I

It remains to estimate n(61, 2,e) , for which we must describe

C61+ C2 . As before, this is made up of the image of all half squares
whose intersections with [0,12 have area S satisfying either

(4.21) a1 = + ( - 2 ) <S < + ( - 612) b1

or
(4.22) a2 = I - ( - 612) <S < ( -2 2)= b

(.2 a2 =1 2 2
+-

We further divide C+ n C6  , into the image of half squares whose

2 1 629intersection with [0,1] is a proper quadrilateral, and those that yield

a triangle. We shall count only the first case, the second can be treated

similarly, and yields same order of magnitude bounds on n(61,62,). Clearly,

because of symmetry, we need only treat quadrilaterals including all of

the side S2 $ for we then simply add a factor of two to our counting to

account for the side S3 .

Such quadrilaterals can be parametrized by two points u and v

representing, respectively the points of intersection of the boundary of

'- the half plane with the sides S3 and S4  of [0,112. Then the area

of the quadrilateral is given by l- (u+v). For such a quadrilateral to

.~~~~ I~ % I 4 4 **. *.

j~' N
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be in the pre-image of C6 1 C it thus follows from (4.21) and
61 2

(4.22) that

2(1-b.) <u + v <_2(1-a.) for i~l or 2.

Similarly, if the coordinates x.3) (e) and xi (4) on S and S
1 1 + 12

define a half square whose image lies in C6 A C2 , then

(4.23) 2(l-bi)m 0 < i +i2 < 2(l-ai)m e  for i=l or 2.

For fixed a.,b. the number of pairs (i1 ,i2 ) satisfying (4.23) is

no more than 2m2 (bi-a i) Now note that via a little algebra

16(bi-a i) : (1-46 2) - <

1- a1 1 (142 )<( 2-61)

Using this and all the above we find that for small enough 62- l,

n(61 ,62,e) < c(62-i)1

= c(62-6,1) NG(e)

Now apply Theorem 3.5 and the fact that a to obtain (4.19) and so

complete the proof.

0..-

.J. k
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5. PROOFS FOR SECTION 3

We need firstly to establish (3.2), i.e. for p > 2

and all A > (l+4knp)

(5.1) P{suplLxl > X(a+2p- 2)} <_ - ap2K fe-U2du
C 2

Our starting point is the basic inequality (2.9). There, put m=l, so

that 60=0, 6,= a, and there is only one x sequence and one : sequence.

Set - n . = x2 2  Then (2.9) becomes

2j/2 2J 2J+l j/2
(5.2) P{suplLxI > X(a + 2 P )} < a E p p(X2 / )

C j=l j=O

The sums are easy to calculate. Following Fernique (1975), for j > 0

P- jl(x 2 j/2) = f £exP2J+lnp + Iin2 - u22J-l]du

< /2 7 fexp[" u2 + 2idnp + k(jzn2 + l-2J)]du,

if x > (l1+4Knp) . Consequently the rightmost sum in (5.2) is bounded by

ap2 p(x) z 2 / 2exp (l-2J).
j=O

Evaluating the sum gives the upper bound in (5.1) with a little room to

spare for the constant. The leftmost sum in (5.2) is easily bounded by
-2

2p , and so (5.1) is established.

We can now start proving the theorems of section 3.

Proof of Theorem 3.1 We commence with (5.1). Note firstly from the proof

of (5.1) we require p-2 < Co i.e. p > c0 We have also required p >2.
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Then by (5.1) and the fact p > 2 we have that for X > (o+ )2(l+4knp)

(5.3) P{suPlLx > x) <-ap f e-U du
C X/(a+2p-2)

< ap 2x-l (a+2p- 2)exp{-X 2/2(a+2p - 2 ) 2}

the last line via the standard inequality. Now set p=x in (5.3),

which can be done if we take x > max(2,O- ) and A > (o+ )2(l+4KznX).

Simple algebra converts these to the conditions on X given in the state-

ment of the theorem. Then on substitution, we obtain

(5.4) P{supILx > X) <-a x2 K  (o+ )exp{-X2/2(+2 X-2)2}
C2

Under the conditions we have on A , it is easy to check that the exponent

here is bounded above by X2/2a2 - 2(+x- )Ia . This completes the

proof.

Proof of Theorem 3.2 We shall not keep track of the constants of the

Theorem throughout. Doing so more than doubles the length of, and compli-

cates, an otherwise simple argument. The interested reader can check the

constants by adding to the following argument some simple algebra.

Fix 6 (O,a), choose X large, and note that we can always choose

f so that f(6) < 1. Then define

P1 = [X'2+ 1 1 P2=f()

Both p1  and P2  are less than X . Apply (5.3) to the two sets

C l "= nC and C2 = C + using p1 and P2 respectively,
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in place of the p there. We find

(5.5) P(suplLx j  > X) <_c[ -+ - KX-1e- 2/2V2

Cl

bounding the exponent in (5.3) as in (5.4). Furthermore

(5.6) P(suplLx > x) <c[xf (X)]2X-le-
C2

Combining (5.5) and (5.6) proves the theorem.

Proof of Theorem 3.3 The idea of the proof is simple. If e is small,

then so are the sets in Go . For AcGe , choose some x*cA. For each

xsA, write L = Lx* + L(x-x*). Since jjx-x*j must be small, L(x-x*)

should be also small (stochastically). To show this we consider L(x-x*)

conditional on Lx*, using an idea used previously in Adler and Brown

(1985) and Berman (1984a) for certain Gaussian processes on Rk. Con-

sequently, Lx = Lx* + a smaller order term. Precise estimates are

given in the theorem. The details of the proof are as follows.

Take AEG 0 and let x* be a point in A satisfying I1x*I = sup jlxj
Ai.e. x* has maximal norm in A. (Such an x* exists, for we lose no

generality in assuming A closed, and our assumption of finite entropy

then guarantees compactness and so the existence of x*.) Consider the

process

L*x: = L(x-x*) = Lx - Lx*

and let A* be its image in L2 (Q,P). Let I be the (identity) operator

on A* that simply identifies each element of A' as a Gaussian variable.

The inner product (u,v) of u=L*x and v=L*y in A* is given by

N

' F" w- " . ,F ,, .%. . : %.. ..- . . -Z
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E(L*x.L*y), I is isonormal on A* and supA*IL = supdL* . Furthermore,

it is trivial to check that

sup 11 ujl el0, and Ilu-vII * lx-yII
A*

Thus the entropy function for I is identical to that for L on the

original space. Now recall the proof of (5.1). Rework it for I on

A*, noting condition (3.12), with p replaced by pf (e). This gives

(5.8) P{suplL*xI > X[6+2f(O)p- 2]1 < 52 f 'e -22du
A r

Furthermore, precisely the same bound holds if we replace L*x by

L**(x) := Lx - E(LxILx*). This follows as for L*, on noting that

Iju-vIiL* < Iju-vjL , which follows from an easy calculation on conditional

variances.

Now note that the event that interests us, supjLxj > X~, is included
A

in the union of the four events:

(5.9) !Lx*I > x - g(e)(l+4Kxnp) ,

(5.10) suplL*xI > X
A

(5.11) supLx > x and 0 < Lx* <x - g(e)(1+4<.~np)
A

(5.12) inf Lx < -x and -x + g(e)(l+4,cinp) < Lx* < 0.
A

The probability of (5.9) is bounded by the first term in (3.13),

while the second term there bounds the probability of (5.10) by (5.8).
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The probabilities of (5.11) and (5.12), which are clearly identical, are

a little more involved to derive.

Note first that by well known properties of Gaussian variables

E(LxlLx* = n) = (x,x*) n

if n > 0, since x* is a point of maximal norm. Consequently

E(LxILx*) < Lx* on the set where Lx* > 0, and so (5.11) is contained

in the event

supL**x > X - Lx* and 0 < Lx* < x - g(e)(l+4Knp) .
A

But L**x and Lx* are independent, so the probability of this event

can be bounded by

A JP(sup L**x > x-u)p(u/a)aA -du
0 A

with y X-g(o)(l+4Znp) . Applying (5.8) for L**, we can bound this

by

2ap2Kof * ( - u )pWu/aA)aA- du.

Setting z = x(x-u), this can be further bounded by

2apZ Kf*(- ) (OA)-dz

Noting that P(x+y) _< p(x)e xy for all x,y, we can further bound

the above by

_4".: -, , 5 .- w*, ' , •
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2ap 2K L ' ~~Go G) Ad

AcaA cA 0

This is now a standard integral, and turns out to be no more than half

the last factor in (3.13). This completes the proof of Theorem 3.3.

Proof of Theorem 3.4. Consider Corollary 3.2 for A's belonging to

Ge n C + and Ge n C6 . where 6c(O,o). Noting the dependence of c1

in Corollary 3.2 on a by writing c1 (a), we find

P~spj~j >x)L n6,eX)cl x- 1 X2/2o2+ 2X-2 x[X4lKzp]

C [N G (x)n(6,0 1{e-(X2/26e +c2x2 exp[-jX4(l+4Kznp)]

Along with the other restrictions on X, now take X > [62(l+4Kinp)]i .

Then applying (3.16) to the above we obtain, changing constants at will,

(5.13) P(suplLxl > X) < NG(e6){(o6) aX- e- 22 + e X226
C

+cn X-1l -X2/2a
2

Choose 6 = aX2ZnX~aj , taking x\ la rge enough s o tha t ( a)

and note that for this 6

a -A2/2a2  -2a 8 X2/2C, 2

and

e- X222 exp{ -- (1 +a26

2a2 62
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Axf _2 [,+2+6-2 k 268,

2a2 62

X2  2Bci< exp{---- LnX1
2a2  6

<-2a -X2 /2ay2

Substituting these last two inequalities into (5.13) establishes (3.17)

and, thus, the theorem.

Proof of Theorem ?.5 We work from Corollary 3.3. For fixed X define

the sequence {S.} given by

46~ =Il, 6 i2 = 2 
- (m-i)XA2  lq..V1

where M : E[2a2  . Clearly it will suffice for us to bound

P(supjLxj > A). Apply Corollary 3.3 to obtain

C0  lm -
P{suplLxl > X)< c E n(6 ,6.,Os)A exp(- A2/6.i2).
C + i=l il *

Note that 6 i-6,_l L 1/(GX2) . Take AL large enough for (3.19) to

hold, and substitute to bound the above sum by

(514 cc l -12oG m(51) c 0  A N (eX ) + n 6A- E. exp(- A216 .2)
XA i1l

Thus to complete the proof we need only bound the last summation by

- Az/a 2e This can be done as follows. Set

I g ' V I
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" = exp{- X2/(02 "(m-i)X )}

It is easy to check that

i-I < aie - I / 2a 4  <

Thus the sum in (5.14) is bounded by
e 1/20 4 k am  _;j.2/o.2

a (e )k < =ce
m k=l I-e

which completes the proof.

Remark: The astute reader may have noticed that at no point in any of our

proofs have we used the full power of the Basic Inequality (2.9), in that

we have not taken advantage of the e and X double sequences to partition C

according to variance (i.e. into the sets of Ge). The reason is that,

while doing so we can improve on the standard upper bounds, we cannot

reach the sharpness of, say, Theorem 3.5 without an intermediate result like

Theorem 3.3. In fact, it is the careful conditioning argument that goes in-

to the proof of Theorem 3.3 that, ultimately, makes everything work.

I,.
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6. SOME COMMENTS

1. Lower bounds. Throughout this paper we have, with the exception of

Example 4.3 treating rectangle indexed sheets, dealt only with upper bounds

for the excursion probability. The fact that in every example for which

lower bounds are available we find that our upper bounds are sharp in the

power of x leads one to believe that they may be sharp in general.

This, however, does not seem to be easy to prove. Some lower bounds are

available from Weber (1980) andthese, like his upper bounds, aresharpforpro-

cesses with constant variance. For the highly nonstationary examples of Section

4 they do not provide bounds that match our upper bounds. As for upper boundS, how-

ever, it is easy to see by example that lower bounds that depend only on entropy

without takinq into consideration varying variance can never be sharp for all cases.

2. Vapnik-Cervonenkis classes. The natural geometric structure of VC classes

of sets or functions should be enough to generate some of the homogeneity

of C required by our theorems. Furthermore, the fact that each VC class

has a natural, single parameter describing its structure (and, in a

certain sense, its "dimensionality") seems to indicate that it should be

possible to apply our results to VC classes in such a way that this para-

meter enters in a simple fashion into the power of X. We have found indi-

cations that this should be true, but have been unable, so far, to put

together a serious proof.

3. Exponential entropy. The exponent of entropy of C is defined by

T = T(C) = lim sup log log N(C,e)/log(l/c).

For L to be continuous on C we must have r < 2. If r < 2, L is

continuous. For r-2 there are examples of both continuous and discontinuous

e r4 e
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(and hence unbounded) processes. By assuming, as we have since Section 3,

polynomial entropy, we assume r=O, thus leaving out many interesting

examples. In particular, we cannot handle many set indexed sheet pro-

blems. (See Dudley (1973, 78) for examples.) Furthermore, bounds of the

form Aae- X2  are not valid in this case. Nevertheless, a result of

Borell (1975, p. 214, middle of proof) states that for all a.s. bounded

Gaussian processes there is a bound of the form exp(- 1/2X2 +const.X). In

fact, Borell's result can be improved on, and, under mild conditions it

is possible to show that there is a function a: [0,2]-[0,1] for which

bounds of the form exp(-1/aX2+const. Xr)) hold. We shall report this

separately.

Il

_J(
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